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We consider a fractional oscillator which is a generalization of the conventional linear oscillator in the
framework of fractional calculus. It is interpreted as an ensemble average of ordinary harmonic oscillators
governed by a stochastic time arrow. The intrinsic absorption of the fractional oscillator results from the full
contribution of the harmonic oscillator ensemble: these oscillators differ a little from each other in frequency
so that each response is compensated by an antiphase response of another harmonic oscillator. This allows one
to draw a parallel in the dispersion analysis for media described by a fractional oscillator and an ensemble of
ordinary harmonic oscillators with damping. The features of this analysis are discussed.
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I. INTRODUCTION

The harmonic oscillator, given by a linear differential
equation of second order with constant coefficients, is a cor-
nerstone of classical mechanics(see, for example,[1,2]). To-
day this elementary(and fundamental) concept has the wid-
est physical, chemical, and engineering applications and
needs no introduction. Its success mainly rests on its univer-
sality, and its simplicity gives boundless intrinsic capabilities
for sweeping generalization. Suffice it to recall the passage
from the language of functions in phase space to operators in
Hilbert space so that the oscillatory model came strongly into
quantum theory[3,4]. Therefore it is no wonder that the frac-
tional calculus has also made an important contribution in
this way.

At first the approach had a formal character by changing
the second derivative in the harmonic oscillator equation to a
derivative of an arbitrary order. After finding the solutions of
such equations their relaxation-oscillation behavior was es-
tablished[5,6]. The next step was a consideration of the total
energy and the phase plane representation for the fractional
oscillator [7]. To save the dimension of energy, it is neces-
sary to generalize to the notation of momentum, although
then the parameterm loses also the ordinary dimension of
mass[8]. In this case the momentum is expressed in terms of
a Caputo-type fractional derivative[6]. The fractional oscil-
lator is like a harmonic oscillator subject to a damping. The
source of the intrinsic damping is very intriguing. It is not
evident from fractional calculus, from the generalization of
the derivative. The question requires additional study ex-
ceeding the bounds of fractional calculus itself.

Since it is a matter of the fractional integral/derivative
with respect to time, the answer to the aforementioned prob-
lem should be sought by way of their concrete interpretation.
Recently, a probability interpretation of the temporal frac-
tional integral/derivative was suggested in[9]. There exists a
direct connection between stable distributions in probability
theory and the fractional calculus. The occurrence of the
temporal fractional derivative(or integral) in kinetic equa-

tions indicates a subordinated stochastic process. Their direc-
tional process is related to a stochastic process with a stable
distribution. The parameter characterizing the stable distribu-
tion coincides with the index of the temporal fractional
integral/derivative in the corresponding kinetic equation.
This means that such an equation describes the evolution of
a physical system whose time degree of freedom becomes
stochastic[10]. The purpose of this paper is to expand the
interpretation to the fractional oscillator.

The paper is organized as follows. In Sec. II we analyze
an ensemble of harmonic oscillators with a stochastic time
clock. The new clock(random process) substitutes for the
deterministic time clock of the ordinary harmonic oscillator.
The nondecreasing random process arises from a self-similar
a-stable random process of temporal steps. Using properties
of the stochastic time clock, we obtain the equation for the
fractional oscillator. In the spirit of this approach the frac-
tional oscillator can be considered as an ensemble average of
oscillators. Section III is devoted to a comparison of the
dispersion properties of two media. One of them consists of
damped noninteracting harmonic oscillators, whereas the
other is the fractional oscillator. It turns out that their disper-
sion characteristics have a lot of common features. We dis-
cuss them in detail. Our conclusions are briefly summarized
in Sec. IV. The Appendix contains calculations for the re-
sponse of the driven fractional oscillator. They are useful for
the dispersion analysis in Sec. III.

II. NORMAL MODES

We start our consideration with the classical case of the
harmonic oscillator. Based on the Hamilton functionH
=sp2+v2q2d /2, wherep and q are the momentum and the
coordinate, respectively, andv the proper frequency, the mo-
tion equations take the form

] q/] t = ] H/] p = p, ] p/] t = − ] H/] q = − v2. s1d

Multiplying the first equation of(1) by ±iv and adding it to
the second equation, we arrive at*Electronic address: alexstan@ira.kharkov.ua
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] c/] t = − ivc, ] c * /] t = ivc * , s2d

where the complex-conjugate valuesc and c* satisfy the
relations

c = svq + ipd/Î2v, c * = svq − ipd/Î2v.

The solutions of Eqs.(2) can be written as

cstd = cs0de−ivt =
1

Î2v
fvqs0d + ips0dge−ivt,

c * std = c * s0deivt =
1

Î2v
fvqs0d − ips0dgeivt. s3d

The valuesc andc* are also called the normal modes of the
oscillator [1]. They have a very pictorial presentation in the
form of a vector rotating just as the hand revolves around the
clock-face center with the frequencyv.

A physical system of harmonic oscillators coupled to an
environment will interact with the environmental degrees of
freedom. This leads to a damping of oscillatory motion. If
the interaction manifests itself in random fashion, one pos-
sible way to account for perturbations induced by the envi-
ronment may be the following. Let us randomize the time
clock of the valuecstd so that any characteristic time is
absent. Assume that the time variable is a sum of random
temporal intervalsTi on the non-negative semiaxis. If they
are independent identically distributed variables belonging to
the strict domain of attraction of ana-stable distribution
s0,a,1d, their sum has asymptotically(the number of the
intervals tends to infinity) the stable distribution with the
index a. Following the arguments of[10,11], a new time
clock is defined as the continuous limit of the discrete count-
ing processNt=maxhnPN :oi=1

n Ti ø tj, whereN is the set of
natural numbers. The time clock becomes the hitting time
processSstd. Its basic properties are represented in[11,12].
The probability density of the processSstd is written in the
form

pSst,td =
1

2pi
E

Br
eut−tua

ua−1 du, s4d

where Br denotes the Bromwich path. This probability den-
sity has a clear physical sense. It describes the probability to
be at the internal timet at the real timet. In this case we
determine new normal modes

castd =E
0

`

pSst,tdcstddt,

ca
* std =E

0

`

pSst,tdc * stddt.

Direct calculations give

qastd = fca
* std + castdg/Î2v = qs0dAstd +

ps0d
v

Bstd,

pastd = ifca
* std − castdgÎv/2 = ps0dAstd + vqs0dBstd,

where

Astd =E
0

`

pSst,tdcosvt dt = E2a, 1s− v2t2ad,

Bstd =E
0

`

pSst,tdsinvt dt = vtaE2a, a+1s− v2t2ad,

and

Em, nszd =
1

2pi
E

C

euum−n du

sum − zd

is the two-parameter Mittag-Leffler function[13]. Here it is
easy to recognize the classical solutions fora=1/2 (expo-
nential function) and a=1 (sine and cosine). The functions
Astd and Bstd exhibit clearly the relaxation features for
0,a,1/2, whereas for 1/2,a,1 the functions represent
a damped oscillatory motion. The latter case just corresponds
to the fractional oscillator. In particular the valueAstd satis-
fies the equation

Astd = As0d −
v2

Gs2adE0

t

st − t8d2a−1Ast8ddt8

with As0d=1, whereGsxd denotes the gamma function. The
appropriate equation can be written also forBstd. It should be
recalled here that the power kernel of the fractional integral
of order a , 0,a,1, “interpolates” the memory function
between the Diracd function (the absence of memory) and
the step function(complete ideal memory). This means that
such memory manifests itself within all the time interval
s0,td, but not at each point of time(complete but not ideal
memory). Under the ideal complete memory the system “re-
members” all its states, and this excites the harmonic oscil-
lations in such a system. The absence of memory causes only
relaxation. The order of the fractional integral represents a
quantitative measure of memory effects[14]. In accordance
with the theory of memory effects the fractional oscillator
contains simultaneously the oscillatory motion and the relax-
ation.

From the series representation ofEm,nszd we derive the
leading asymptotic behavior of the valuesAstd and Bstd for
t→0: limt→0Astd=1, limt→0Bstd=0. According to[13], the
two-parameter Mittag-Leffler function approaches zero asz
→` in the sector of anglesuargs−zdu, s1−m /2dp, and in-
creases indefinitely asz→` outside of this sector. In our
case we can use the following expansion valid on the real
negative axis:

Em,nszd = − o
n=1

N−1
z−n

Gsn − nmd
+ Osuzu−Nd, z→ − `.

Thus, for 0,a,1/2 and 1/2,a,1 the valuesAstd and
Bstd decrease algebraically in time. As distinct from the case
of a damped harmonic oscillator, the model describes another
damping mechanism, without any external frictional force.
The damping of a fractional oscillator is due to internal
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causes[15]. How to explain the attenuated oscillations? This
important feature of fractional oscillators has already been
noted from time to time in various publications[5,7,8]. How-
ever, the source of such intrinsic damping remained unde-
cided.

We suggest the following interpretation. The fractional
oscillator should be considered as an ensemble average of
harmonic oscillators. When all harmonic oscillators are iden-
tical, and we set them going in the same phase, their full
contribution will be equal to the product of the number of
oscillators and the response of one oscillator. This occasion
appears ifa=1. However, if the oscillators differ a little from
each other in frequency, even if they start in phase, after a
while the oscillators are allocated uniformly around the clock
face. Each response will have an antiphase response of an-
other oscillator so that the total response of all harmonic
oscillators in such a system is compensated. Although each
oscillator is conservative(its total energy is saved), the sys-
tem of such oscillators, resulting in the fractional oscillator
s1/2,a,1d, shows a dissipative nature. In this connection
it should be pointed out that a similar situation may be ob-
served also in a medium of harmonic oscillators, having a
given probability density in frequency(for example, the Lor-
entz distribution[16]). Both these cases are closely con-
nected with each other and have a common ground, though,
generally speaking, they describe different physical systems.
As has been shown in[17,18], Lagrangian and Hamiltonian
mechanics formulated with fractional derivatives in time can
be used for the description of nonconservative forces such as
friction. The interpretation of the fractional oscillator in[19]
should also be mentioned. In this case the Liouville equation
is formulated from a fractional analog of the normalization
condition for the distribution function that can be considered
in a fractional phase space. The latter has a fractional dimen-
sion as well as the fractional measure. The volume element
of the fractional phase space is realized by fractional exterior
derivatives. The usual nondissipative systems become dissi-
pative in the fractional phase space. However, the approach
is different from ours. It operates with fractional powers of
coordinates and momenta. Such fractional systems are non-
linear.

III. DISPERSION

Now we examine the behavior of the fractional oscillator
under the influence of an external force. From above this
case corresponds to oscillations in the ensemble of noniden-
tical harmonic oscillators noninteracting with each other. In
the framework of this model the fractional oscillator with the
initial conditions xs0d=0 and ẋs0d=0 is described by the
equation

xstd = −
v0

a

GsadE0

t

st − t8da−1xst8ddt8

+
1

GsadE0

t

st − t8da−1Fst8ddt8, s5d

where 1,a,2 should be retained, andF is the external

force. The dynamic response of the driven fractional oscilla-
tor was investigated in[8]:

xstd =E
0

t

Fst8dst − t8da−1Ea, a„− v0
ast − t8da

…dt8. s6d

This allows us to define the response for any desired forcing
function Fstd. The “free” and “forced” oscillations of a frac-
tional oscillator depend on the indexa. However, in the first
case the damping is characterized only by the “natural fre-
quency” v0, whereas the damping in the case of “forced”
oscillations depends also on the driving frequencyv. Each of
these cases has a characteristic algebraic tail itself, associated
with damping[15].

Let Fstd be periodic,Fstd=F0e
jvt. Then the solution of

Eq. (5) is determined by taking the inverse Laplace trans-
form

xstd =
1

2p j
E

Br
est F0ss+ jvdds

ss2 + v2dssa + v0
ad

. s7d

The Bromwich integral(7) can be evaluated in terms of the
theory of complex variables. Some particular examples of
forcing functions were considered in[8]. However, the set
turns out to be scanty enough for our aim. The necessary
computations withFstd=A sinsvt+fd are fulfilled in the Ap-
pendix. The phasef is constant.

If one waits for a long enough time, the normal mode of
this system is damped. Therefore, consider only the forced
oscillation. After the substitution ofx̄std=x0e

jvt for xstd in
Eq. (5) we obtain

x0e
jvt = −

v0
a

GsadE0

t

st − t8da−1x0e
jvt8 dt8

+
1

GsadE0

t

st − t8da−1F0e
jvt8 dt8. s8d

It is convenient to change the variablevst− t8d=z in the in-
tegrand. Next we can divide out exps jvtd from each side of
Eq. (8) and directt to infinity. The procedure permits us to
extract the contribution of steady-state oscillations. Using the
table integral[20]

E
0

`

za−1e−jz dz= Gsade−jpa/2,

Eq. (8) gives

x0 =
F0

fv0
a + va exps jpa/2dg

. s9d

This result is completely confirmed by a more comprehen-
sive analysis given in the Appendix.

As is well known, the ensemble behavior of identical non-
interacting harmonic oscillators is a basic topic for consider-
ation in the classical theory of dispersion. It is necessary to
take into account the nonidentity of oscillators, for example,
for the dispersion analysis of propagating electromagnetic
waves into a heated gas, where the spread in molecule ve-
locity values leads to a Doppler shift of the oscillators’ nor-
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mal frequency with respect to the forced field frequency.
Right now let a medium of oscillators be one that results in
the fractional oscillator. The polarizability of such a medium
interests us. In this case the permittivity is written ase=1
+4pe2x0/ sF0md, wheree is the electron charge. It should be
pointed out that in contrast to a simple harmonic oscillator
the parameterm does not have the ordinary dimension of
mass. However, the generalized momentump of the frac-
tional oscillator is defined via the Caputo-type fractional de-
rivative of ordera /2 [6] so that the expressionp2/ s2md has
the dimension of energy(see details in[8]). The real and
imaginary parts of the permittivity take the form

Reesvd = 1 +
4pe2fv0

a + va cosspa/2dg
mfv0

2a + v2a + 2v0
ava cosspa/2dg

, s10d

Im esvd = −
4pe2va sinspa/2d

mfv0
2a + v2a + 2v0

ava cosspa/2dg
. s11d

For a=2 we arrive at the Sellmeier formula[21]:

esvd = 1 + 4pe2N/fmsv0
2 − v2dg,

where we includeN to account for the number of harmonic
oscillators in the medium. In this case the parameterm is
really the electron mass. The indexa=2 corresponds to the
classical harmonic oscillator without any damping, and all
the oscillators in the ensemble go in the same phase. There-
fore, the Sellmeier formula contains only the real part of the
permittivity.

We can conduct a clear comparison between the disper-
sion characteristics of the fractional oscillator and those of an
ensemble of classical harmonic oscillators with damping.
Normalize the frequencyv in their permittivity byv0. In fact
the constants(like e, m, and so on) in Reesvd and Imesvd
define only a scale. Thus, one can pick out the functional

dependence of these permittivities onv /v0=z. Denote
2g /v0 by b, whereg defines the damping in each classical
harmonic oscillator. Then we have the following depen-
dences for the fractional oscillator:

ReeFsvd → fFsz,ad =
1 + za cosspa/2d

z2a + 2za cosspa/2d + 1
,

Im eFsvd → gFsz,ad =
za sinspa/2d

z2a + 2za cosspa/2d + 1
,

and those for the classical harmonic oscillators with damp-
ing:

ReeDsvd → fDsz,bd =
1 − z2

s1 − z2d2 + z2b2 ,

Im eDsvd → gDsz,bd =
zb

s1 − z2d2 + z2b2 .

If the parameterb determines the damping value in the har-
monic oscillator, the indexa just characterizes the same for
the fractional oscillator. The extremum values offDsz,bd and
gDsz,bd decrease with increasing parameterb and vice versa
for fFsz,ad andgFsz,ad: the extremum values increase with
increasing indexa, though it should be noted that this index
itself belongs only to the interval 1,aø2. The functions
f…szd andg…szd are shown in Fig. 1 and Fig. 2.

From the relations(10) and (11) it follows that there is a
frequency range where the absorption is small, and the re-
fraction coefficient increases with frequency(normal disper-
sion). Moreover, in the frequency range where the absorption
is big, anomalous dispersion happens with the refraction co-
efficient decreasing with increasing frequency. In this con-
nection it should be pointed out that the presence of normal
and anomalous dispersion is typical for such an ensemble of

FIG. 1. Dispersion dependence
of the fractional oscillator in the
form of the functionsfFsv /v0,ad
and gFsv /v0,ad with different
values ofa, from 0.1 to 0.9 with a
step 0.1.
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ordinary harmonic oscillators and is well known. However,
here we have established that normal and anomalous disper-
sion is also typical for the medium described as a fractional
oscillator.

IV. SUMMARY

We have shown that the fractional oscillator can be con-
sidered as a model of the harmonic oscillators’ medium. Its
stochastic properties accumulate in the index of the frac-
tional integral/derivative with respect to time. The frequency
difference of the oscillators(constituents of the fractional
oscillator) from each other is at the bottom of the intrinsic
damping for such a system. As a consequence, the dispersion
properties of the medium, as for the fractional oscillator, are
similar enough to the case when a medium is modeled by an
ensemble of harmonic oscillators with damping.

APPENDIX

We here derive properties of the response function(6) for
the forcing functionA sinsvt+fd directly from its represen-
tation as a Laplace inverse integral

xstd =
1

2p j
E

Br
estx̃ssdds=

1

2p j
E

Br
estAsssinf + v cosfdds

ss2 + v2dssa + v0
ad

,

sA1d

where the phasef is constant, Br denotes the Bromwich
path, and 1,aø2. By bending the Bromwich path into the
equivalent Hankel path(Fig. 3), the response functionxstd
can be decomposed into two contributions.

The first contribution arises from the two borders of the
cut negative real axis(lines DE andFG):

x1std = −
1

2p j
E

−`

0

estx̃ssdds−
1

2p j
E

0

−`

estx̃ssdds.

To enters=rejp into the integral taken along the upper bor-
der ands=re−jp into the integral along the lower border, we
get

x1std =E
0

`

e−rtMasrddr

with

FIG. 2. Dispersion dependence
in the classical case(ensemble of
ordinary harmonic oscillators with
damping) with different values of
b, from 0.1 to 1.0 with a step 0.1.

FIG. 3. Contour inside which the functionx̃ssd remains single
valued and analytical all over, with the exception of poles ±jv and
v0 exps± jp /ad.
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Masrd =
A rasv cosf − r sinfdsinpa

psr2 + v2dsr2a + 2rav0
a cospa + v0

2ad
.

The second contribution is determined by the Cauchy
theorem on residues. The integrand of Eq.(A1) has the fol-
lowing poles:

s= ± jv and s= v0e
± jp/a.

Calculating the residues of the poless= ± jv, we obtain

x28std = ASv0
a sinsvt + fd + va sinsvt − pa/2 + fd

v0
2a + v2a + 2v0

ava cosspa/2d
D .

It remains to define the residues for the two other poles:

F estsssinf + v cosfd
ss2 + v2dsd/dsdssa + v0

adGs=v0e± jp/a

=
ev0tscosp/a± j sin p/adfv0e

± jp/a sinf + v cosfg
a va−1e± jpsa−1d/afv0

2e±2jp/a + v2g
.

They lead to

x29std =
2A expfv0t cossp/adgsC cosf − D sinfd

a va−1fv0
4 + v4 + 2v0

2v2 coss2p/adg
,

where

C = vhv0
2 cosfv0t sinsp/ad − ps1 + ad/ag

+ v2 cosfv0t sinsp/ad + ps1 − ad/agj,

D = v0hv0
2 cosfv0t sinsp/adg + v2 cosfv0t sinsp/ad

+ 2p/agj.

As a result, the response functionxstd takes the form

xstd = x1std + x28std + x29std.

Since cossp /ad,0, the termx29std describes the relaxation of
the normal mode in this system. For 1,a,2 and allr the
denominator of the valueMasr ,ad is always positive:sr2a

+2rav0
acospa+v0

2ad. sra−v0
ad2ù0, and the term sinpa is

always negative. Depending onf, each of the termsv cosf
andr sinf may be both positive and negative. However, the
value x1std becomes vanishingly small witht→`. The
steady-state oscillation in this system is defined only by the
term x28std. The latter can be expressed asx28std=A1 sinsvt
+f−dd, where

A1 =
A

fv2a + v0
2a + 2vav0

a cosspa/2dg1/2,

d = arctanF va sinspa/2d
va cosspa/2d + v0

aG .

To put f=0 in Eq. (A1), we arrive at the results of Sec. 4.3
from [8]. It should also be noted that the oscillatory contri-
bution x29stduf=0 has some resemblance to the “free” oscilla-
tions of a damped harmonic oscillator and the forced oscil-
lations of a driven damped harmonic oscillator[15].
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